p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C22≀C2, C24⋊1C2, C22⋊2D4, C23⋊1C22, C22.10C23, (C2×D4)⋊1C2, C2.4(C2×D4), C22⋊C4⋊2C2, (C2×C4)⋊1C22, 2-Sylow(SO+(4,4)), SmallGroup(32,27)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22≀C2
G = < a,b,c,d,e | a2=b2=c2=d2=e2=1, ab=ba, eae=ac=ca, ad=da, bc=cb, ebe=bd=db, cd=dc, ce=ec, de=ed >
Subgroups: 106 in 65 conjugacy classes, 26 normal (5 characteristic)
C1, C2, C2, C4, C22, C22, C22, C2×C4, D4, C23, C23, C23, C22⋊C4, C2×D4, C24, C22≀C2
Quotients: C1, C2, C22, D4, C23, C2×D4, C22≀C2
Character table of C22≀C2
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 4A | 4B | 4C | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
(1 2)(3 4)(5 6)(7 8)
(1 8)(2 7)(3 5)(4 6)
(1 7)(2 8)(3 5)(4 6)
(1 2)(3 6)(4 5)(7 8)
(1 4)(2 5)(3 8)(6 7)
G:=sub<Sym(8)| (1,2)(3,4)(5,6)(7,8), (1,8)(2,7)(3,5)(4,6), (1,7)(2,8)(3,5)(4,6), (1,2)(3,6)(4,5)(7,8), (1,4)(2,5)(3,8)(6,7)>;
G:=Group( (1,2)(3,4)(5,6)(7,8), (1,8)(2,7)(3,5)(4,6), (1,7)(2,8)(3,5)(4,6), (1,2)(3,6)(4,5)(7,8), (1,4)(2,5)(3,8)(6,7) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8)], [(1,8),(2,7),(3,5),(4,6)], [(1,7),(2,8),(3,5),(4,6)], [(1,2),(3,6),(4,5),(7,8)], [(1,4),(2,5),(3,8),(6,7)]])
G:=TransitiveGroup(8,18);
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)
(1 3)(2 4)(5 10)(6 9)(7 14)(8 13)(11 16)(12 15)
(1 4)(2 3)(5 9)(6 10)(7 16)(8 15)(11 14)(12 13)
(1 9)(2 10)(3 6)(4 5)(7 13)(8 14)(11 15)(12 16)
(1 11)(2 13)(3 12)(4 14)(5 8)(6 16)(7 10)(9 15)
G:=sub<Sym(16)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16), (1,3)(2,4)(5,10)(6,9)(7,14)(8,13)(11,16)(12,15), (1,4)(2,3)(5,9)(6,10)(7,16)(8,15)(11,14)(12,13), (1,9)(2,10)(3,6)(4,5)(7,13)(8,14)(11,15)(12,16), (1,11)(2,13)(3,12)(4,14)(5,8)(6,16)(7,10)(9,15)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16), (1,3)(2,4)(5,10)(6,9)(7,14)(8,13)(11,16)(12,15), (1,4)(2,3)(5,9)(6,10)(7,16)(8,15)(11,14)(12,13), (1,9)(2,10)(3,6)(4,5)(7,13)(8,14)(11,15)(12,16), (1,11)(2,13)(3,12)(4,14)(5,8)(6,16)(7,10)(9,15) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16)], [(1,3),(2,4),(5,10),(6,9),(7,14),(8,13),(11,16),(12,15)], [(1,4),(2,3),(5,9),(6,10),(7,16),(8,15),(11,14),(12,13)], [(1,9),(2,10),(3,6),(4,5),(7,13),(8,14),(11,15),(12,16)], [(1,11),(2,13),(3,12),(4,14),(5,8),(6,16),(7,10),(9,15)]])
G:=TransitiveGroup(16,39);
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)
(1 7)(2 8)(3 6)(4 5)(9 12)(10 11)(13 15)(14 16)
(1 15)(2 16)(3 9)(4 10)(5 11)(6 12)(7 13)(8 14)
(1 9)(2 10)(3 15)(4 16)(5 14)(6 13)(7 12)(8 11)
(2 16)(4 10)(5 8)(6 13)(7 12)(11 14)
G:=sub<Sym(16)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16), (1,7)(2,8)(3,6)(4,5)(9,12)(10,11)(13,15)(14,16), (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14), (1,9)(2,10)(3,15)(4,16)(5,14)(6,13)(7,12)(8,11), (2,16)(4,10)(5,8)(6,13)(7,12)(11,14)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16), (1,7)(2,8)(3,6)(4,5)(9,12)(10,11)(13,15)(14,16), (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14), (1,9)(2,10)(3,15)(4,16)(5,14)(6,13)(7,12)(8,11), (2,16)(4,10)(5,8)(6,13)(7,12)(11,14) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16)], [(1,7),(2,8),(3,6),(4,5),(9,12),(10,11),(13,15),(14,16)], [(1,15),(2,16),(3,9),(4,10),(5,11),(6,12),(7,13),(8,14)], [(1,9),(2,10),(3,15),(4,16),(5,14),(6,13),(7,12),(8,11)], [(2,16),(4,10),(5,8),(6,13),(7,12),(11,14)]])
G:=TransitiveGroup(16,46);
C22≀C2 is a maximal subgroup of
C22.19C24 C22.29C24 C22.32C24 D42 C22.45C24 C22.54C24 C24⋊C22 C24⋊C6 C22⋊S4 C24⋊D5 D6≀C2
C23⋊D2p: C2≀C22 C23⋊3D4 C23⋊2D6 C23⋊D10 C23⋊D14 C23⋊D22 C23⋊D26 ...
D2p⋊D4: D4⋊5D4 D6⋊D4 C22⋊D20 C22⋊D28 C22⋊D44 C22⋊D52 ...
C23.D2p: C2≀C4 C24⋊4S3 A4⋊D4 C24⋊2D5 C24⋊D7 C24⋊D11 C24⋊D13 ...
C22≀C2 is a maximal quotient of
C23⋊Q8 C23.78C23 D4.8D4 D4.10D4 D6≀C2
C23⋊D2p: C23⋊2D4 C2≀C22 C23⋊2D6 C23⋊D10 C23⋊D14 C23⋊D22 C23⋊D26 ...
C22⋊D4p: C22⋊D8 D6⋊D4 C22⋊D20 C22⋊D28 C22⋊D44 C22⋊D52 ...
C23.D2p: C24⋊3C4 C23.8Q8 C23.23D4 C23.10D4 Q8⋊D4 D4⋊D4 C22⋊SD16 C22⋊Q16 ...
action | f(x) | Disc(f) |
---|---|---|
8T18 | x8-x6-x4-x2+1 | 28·32·134 |
Matrix representation of C22≀C2 ►in GL4(ℤ) generated by
-1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 |
0 | -1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 |
0 | -1 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | -1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,Integers())| [-1,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,-1],[-1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,-1],[-1,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,1],[-1,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;
C22≀C2 in GAP, Magma, Sage, TeX
C_2^2\wr C_2
% in TeX
G:=Group("C2^2wrC2");
// GroupNames label
G:=SmallGroup(32,27);
// by ID
G=gap.SmallGroup(32,27);
# by ID
G:=PCGroup([5,-2,2,2,-2,2,101,302]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^2=e^2=1,a*b=b*a,e*a*e=a*c=c*a,a*d=d*a,b*c=c*b,e*b*e=b*d=d*b,c*d=d*c,c*e=e*c,d*e=e*d>;
// generators/relations
Export